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A generalised form of extended lattice-lattice scaling and its 
relationship to the scaled equation of state with applications 
to the Ising model 

D S Gaunt and A J Guttmann? 
Wheatstone Physics Laboratory, King’s College, Strand, London WC2R 2LS, UK 

Received 13 January 1978 

Abstract. A natural generalisation of lattice-lattice scaling is suggested which holds 
exactly for the second most singular amplitudes for the Ising model on the triangular, 
honeycomb, square and KagomC lattices. In general, this scaling theory requires three 
scaling parameters g, n and m, but includes extended lattice-lattice scaling as the special 
case of m = n. The generalised form of lattice-lattice scaling does not seem to be 
applicable to the three-dimensional king model. The connections between lattice-lattice 
scaling, its extension and generalisation, and the critical equation of state including 
correction terms are established and discussed. 

1. Introduction and summary 

It is known that while extended lattice-lattice (ELL) scaling holds for the second most 
singular amplitudes for the simple Ising model on the triangular (T), honeycomb (H) 
and square (s) lattices (Guttmann 1974), it does not hold for the KagomC (K) lattice 
(Ritchie and Betts 1975). It is the aim of this paper to introduce a generalised 
extended lattice-lattice (GELL) scaling theory which holds for all four lattices and 
which includes ELL scaling as a special case, and also to discuss the connections 
between these types of scaling and the critical equation of state including correction 
terms. 

ELL scaling theory is also known to break down for the three-dimensional Ising 
model (Oitmaa and Ho-Ting-Hun 1976, Guttmann 1977). We have applied our GELL 
scaling to the three-dimensional lattices and find that this also fails to hold, at least to 
within the numerical uncertainties of the amplitudes. Either our uncertainties are 
unrealistically small or, more likely, the second most singular amplitudes for the 
three-dimensional Ising model do not scale, at least not in any obvious or simple way. 
This breakdown of ELL scaling and GELL scaling appears to be the case for the Ising 
model in the Bethe approximation and also for the spherical model (see § 6). 
Consequently, we concentrate on the two-dimensional king lattices in the remainder 
of this paper. 

Our generalisation of ELL scaling is suggested by first determining in § 2 the 
implications of lattice-lattice (LL) scaling (Betts et a1 197 1) for the scaling function 
h&) in the critical equation of state (Griffiths 1967, Gaunt and Domb 1970), 

h = mH/kT = MSho(x) .  (1.1) 
t On leave from the Department of Mathematics, University of Newcastle, NSW 2308, Australia. 
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Here 

x = [ ( T -  T J T ]  M-lIP = fM-lIP (1.2) 

and all the other symbols take their usual meaning (Gaunt and Domb 1970). It turns 
out that LL scaling of the most singular amplitudes implies ho(x)/ho(O) is the same 
function of x / x o  for all lattices of given dimensionality; that is, ho(x)/ho(O) is a 
universal function of x / x o .  We remind the reader (see Betts eta1 1971) that LL scaling 
is a weaker form of scaling than that embodied in (1.1); the latter also implies the 
usual critical exponent relations including, in particular, exponent symmetry. 
However, for the two-dimensional Ising model which is our main concern here, all 
these exponent relations are known to be satisfied exactly. 

Correction terms to (1.1) have been calculated by Domb (Domb 1971, Domb and 
Gaunt 1971) and take the form 

h =Mbho(x)+Mb+(1 /8 )h l (x )+M6+(2’P)h2(~)+ ,  , , k l b )  
k z ( X ) + .  . .+. . . . (1.3) + ~ 6 + [ ( v + l ) / P l  

It is easily shown that for the two-dimensional Ising model this equation is consistent 
with that implied by Wegner’s work using renormalisation group arguments (Wegner 
1972). The derivation of (1.3) assumes that the high-temperature behaviour of the 
field derivatives of the free energy evaluated in zero field are of Darboux form, that is, 
the correction to scaling exponent is unity. This seems to be a not unreasonable 
assumption at least for the two-dimensional Ising model where at least the zeroth and 
second field derivatives are known rigorously to be of this form (Onsager 1944, 
Barouch et a1 1973). For the three-dimensional Ising model, the leading correction 
term for the high-temperature initial susceptibility appears to take the non-Darboux 
form (Wortis 1970 Newport Conference on Phase Transitions unpublished, Wegner 
1972) 

( k T / m 2 ) ~ o - C ~ , z t - Y ( 1 + E t A 1  +Ft+.  . .), (H=O,t+O+) (1.4) 

where the most recent estimate of the leading correction to scaling exponent is 
Al = 0.493 f 0.007 (Le Guillou and Zinn-Justin 1977). However, the critical ampli- 
tudes C&, E and F are all spin dependent and the best available evidence (Camp and 
Van Dyke 1975) suggests that E = 0 when S = i. In this event, (1.4) reduces to 
Darboux form at least to leading order. The same probably happens for the higher 
derivatives suggesting that (1.3) may also be appropriate for the S = three-dimen- 
sional Ising model. 

In 0 3 we make the not unreasonable assumption that the leading correction 
function h l ( x )  scales in a similar way to ho(x), namely h l ( x ) / h l ( 0 )  is a universal 
function of X / X O .  We are then led automatically to a GELL scaling theory for the 
second most singular amplitudes. This generalisation involves in addition to the n and 
g parameters of LL scaling, a third parameter that we denote by m. These three 
parameters g,  n and m reflect the three scaling lengths pertinent to the problem; these 
are respectively xo for x,  ho(0) for ho(x)  and h l ( 0 )  for h t ( x ) .  At the end of this section 
we discuss how GELL scaling is modified in the event that the scaling length h l ( 0 )  = 0. 

It is clear that scaling the higher-order correction functions k l ( x ) ,  h 2 ( x ) ,  . . . in an 
analogous manner will lead to scaling theories for the third most singular amplitudes 
and higher. However, we have not thought it worthwhile to pursue these ideas 
beyond the second amplitudes, 
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We show in 0 4 that ELL scaling is contained within GELL scaling as the special case 
m = n. Alternatively, ELL scaling can be viewed as arising when both ho(x)/ho(0) and 
h l ( x ) / h o ( 0 )  are universal functions of x/xo; that is, the one scaling length, ho(0), is 
adequate for both scaling functions. 

It is known that ELL scaling ( m  = n )  holds exactly for the triangular, honeycomb 
and square lattices but not for the KagomC lattice. In 0 5 we show that for the 
KagomC lattice the second most singular amplitudes are only given exactly by using 
GELL scaling with m # n. We calculate the exact values of g ,  n and m for the KagomC 
lattice and show that the magnitudes of the exact values of all the second most singular 
amplitudes are all 1'398396% smaller than the ELL scaling predictions. 

In 0 6 we study the form of the scaling functions ho(x)  and h l ( x )  for the Ising 
model in both the mean field and Bethe approximations, and also for the spherical 
model. We find that ho(x) /ho(0)  is a universal function of x/xo in all these cases. 
However, the mean field approximation for the Ising model is the only case for which 
h l ( x ) / h l ( 0 )  is a universal function of x / x o  and even then only in a rather trivial sense. 
Clearly ELL scaling and GELL scaling are not of general validity. 

Finally, we summarise our results and conclusions in 0 7. 

2. Lattice-lattice scaling 

The generalised law of corresponding states asserts that for various lattice models, 
including the Ising model, the most singular part of the free energy per site on lattice 
X ,  namely f x ( t x ,  h x ) =  NG1 In Zx, is related to the most singular part of the free 
energy per site on Y, namely f Y ( t Y ,  hy) ,  by the relation 

nxfx(tx,  h x ) = n y f y ( t ,  h ~ ) = f ( f ,  h) .  (2.1) 

Here the reduced magnetic field variable h = mH/kT is scaled according to 

nxhx = nyhy = h (2.2) 

and the reduced temperature variable t = (T - Tc)/ T is scaled according to 

gxtx = gyty  = t. (2.3) 

The law was first stated in precisely this form by Ritchie and Betts (1975). The earlier 
formulation of Betts et a1 (1971) used mH/kTc as the reduced field variable and 
(T- T J T ,  as the reduced temperature variable. For LL scaling the distinction 
between the two choices is immaterial but for ELL scaling to hold for the square, 
triangular and honeycomb Ising lattices it is important (Ritchie and Betts 1975) to use 
(as we do throughout this paper) mH/kT and (T  - Tc) /T .  

From the above law follow the LL scaling relations (Betts et a1 1971) for the critical 
amplitudes of various thermodynamic quantities corresponding to the dominant 
singular term in their asymptotic behaviour close to the critical point. For example, if 
we write the spontaneous magnetisation (using the conventional notation) as 

Mo(T)-Bo(- - t )B+Bl( - t )B+l+.  . . ( H  = 0,  t + 0-), (2.4) 

Bo,x/Bo,y  = (gx /gY)B .  (2.5) 

then (2.1) yields the LL scaling relation 
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Since Bo and p = $  are known exactly for all two-dimensional lattices, the g-  
parameters may be computed exactly from this relation by taking the triangular lattice 
as a standard and setting gT = 1. 

The n-parameters are simply related to the amplitude Do describing the shape of 
the critical isotherm 

h,=mH/kTc-DoMS ( t  = 0, H +  O+) (2.6) 

Do,xlDo,Y = nY/nx. (2.7) 

by the LL scaling relation 

Unfortunately the amplitudes Do are not known exactly and hence (2.7) is unsuitable 
for the numerical determination of the n-parameters. However, the specific heat 
amplitudes defined by 

C,=o(T)/k -d+(t)+A:t-" +A:t-Q+l +.  . . ( H  = 0, t + 0+) (2.8) 

( H = 0 ,  t + O - )  (2.9) - d- ( t )  + A  0 (- t)-*' + A; (- t)-*'+' + . . . 
where d:(t) are analytic functions of t ,  are known exactly in two dimensions. (Note 
that for the two-dimensional Ising model a = a' = 0 and the terms tCQ, . . . etc should 
be replaced by -In t, , . . etc.) One finds 

A b d A i , Y  = (nY/nx)(gx/gY)2-Q = A&/Ai,y, (a  =a'), (2.10) 

from which exact values of the n-parameters can be obtained for all the two- 
dimensional lattices upon taking the triangular lattice as standard and setting nT = 1. 

Now let us see what the LL scaling relations imply about the scaling function ho(x) 
in (1.1). Clearly, the spontaneous magnetisation corresponds to some point x = 
-xo(xo > 0) at which ho(-xo) = 0 so that H = 0 for M # 0. From (1 -2) 

MO = X;P(-t)B (2.11) 

so that by comparison with (2.4) 

Bo = x i 5  
and hence 

5 
B0,XlBO.Y = (XO,Y/XO,X) 

From (2.13) and (2.5) it follows that 

(2.12) 

(2.13) 

gxlgy = xo,Y/xo.x. (2.14) 

Now along the critical isotherm x = 0, so that comparison of (1.1) and (2.6) gives 

Do = ho(0) # 0. 

Hence, from (2.15) and (2.7) we get 

(2.15) 

nx/nY = ho,y(O)/ho.x(O). (2.16) 
Equations (2.14) and (2.16) express the fundamental n-  and g-parameters of LL 
scaling theory in terms of basic parameters relating to the scaling function ho(x). 

It is known (Grifiths 1967) that ho(x) has a convergent Taylor series expansion 
about x = 0, namely 

m 

(2.17) 
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where 

ho,o = how). 

Substituting (1.2) into (2.17) and using ( l . l ) ,  we obtain 

(2.18) 

(2.19) 

On integrating with respect to M we obtajn the singular behaviour of the higher- 
temperature derivatives of the free energy evaluated at the critical temperature, 

1 (1=0 ,1 ,2  , . . .  ). (2.20) 
31 -- I!ho,r M S + l - ( l I P )  

ar' ,=o [ a +  l-(l/P)I 

Reverting (2.6) and using (2.15) gives 

( t  = 0, H + O+). l / S  1/6 M-ho(0)- h ,  

Substituting (2.21) into (2.20) we find 

1 1 al=--l--  
A S  

(2.21) 

(2.22) 

(2.23) 

(2.24) 

and we have written A = PS. From (2.23) it follows on assuming that critical exponents 
are lattice independent for a given model and dimensionality that 

Equating this to the LL scaling relation of Betts er a1 (1971), namely 
al+l 

we get 

h OJ,X - 
h O , l ,  Y 
-- 

on using (2.14) and (2.16). Thus, 

~ o , ~ , x x b , x / ~ o . x ( O ) =  ho,l,YXb,Y/ho,Y(0)= C0,I 

h0,l = co,rho(O)/xb 

Hob)= ho(x)/ho(O)= c C O . I ( X / X O Y .  

where CO,! is a universal constant. Hence, 

and substituting into (2.17) we finally get 
00 

I=O 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 
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According to (2.30), Ho(x)  has a convergent Taylor expansion in powers of 

U = x / x o  (2.31) 

with coefficients co,l  which are lattice independent. Provided that Ho(x)  does not have 
a natural boundary of singularities in the complex x-plane, we may conclude that 
Ho(x)  is a universal function ouer the entire physical range, that is, real U such that 
-1 d U <Co. 

Alternatively, we may start from the large-x expansion of h o ( x )  (Griffiths 1967) 
m 

1 = 1  
(2.32) 

which as shown by Domb and Hunter (1965) is equivalent to the (21 - 1)th derivative 
of A4 with respect to H having a singularity of the form 

/3(6+1-21) ho(x)= c 771x 

(H = 0 ,  t + O+), (2.33) 

where 1 = 1 , 2 , 3 , .  . . . Now LL scaling theory gives 
21-1 

( I  = 1, 2, 3, , , . ) G 2 1 . x  

= (3 (:)’”. (2.34) 

where according to scaling theory 

Y Z I  = Y + 2(l- 114 ( I =  1 , 2 , 3 , .  . .). (2.35) 

By expressing the Cof.zl in terms of the q1 and then using (2.34) it can be shown to any 
desired order that 

9 ( I  = 1 , 2 , 3 , .  , . ) (2.36) /3(6+1-21) 
7 7 1  = bo,1ho(0)/xo 

where bo,[ are universal constants. Substituting (2.36) into (2.32) gives the final result 

(2.37) 

so that once again we see that Ho(x)  is a universal function of U = x/xo. 

1971) yield a Taylor expansion for Ho(x) about U = -1 of the form 
Below T,, the analogues of (2.33) and (2.34) (Gaunt and Domb 1970, Betts et a f  

(2.38) 

with coefficients do , ,  which are universal constants. 
Finally we remark that there is nothing particularly significant about scaling the 

function ho(x) by the ‘length’ ho(0). The scaling length ho(a) # 0 will do just as well, 
since if ho(x)/ho(0) is a universal function of U then 

is universal too. It follows that 

(2.39) 
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3. Generalised extended lattice-lattice scaling 

To extend lattice-lattice scaling to the next most singular term we include the leading 
correction term in (1.3), namely 

h = M'ho(x)+M'+"'B)h 1 ( X  >. (3.1) 

As we have seen in § 2, LL scaling for the dominant singular term implies that 
ho(x)/ho(0) is a universal function of x / x o .  We now assume that 

h 1(x)/  h l (0)  = Hl(U 1, (hl(0)  f 0 )  (3.2) 

is also a universal function of x / x o .  The scaling length hl(0) is no more special for 
hl(x)  than was ho(0) for ho(x). An argument exactly analogous to that pertaining to 
(2.39) shows that any length such as hl(b)#O is just as good. By analogy with (2.16), 
let us define a new scaling parameter by 

mx/mY = h I , Y ( O ) / ~  I . x ( O )  = h 1 , ~ ( b ) / h  1,x(b). (3.3) 

H l ( u )  will have universal expansions about U = -1, U = 0 and U = 03 of the form 
(Domb 1971) 

= f C1, 'U'  
l = O  

(3.5) 

m 

(3.6) 
p (6+1-21)+ 1 

= c b1.P 
/ = 1  

which are the analogues of (2.38), (2.30) and (2.37), respectively. 

by (2.6) along the critical isotherm. Putting x = 0 in (3.1) we see that 
First let us examine the leading correction term to the dominant behaviour given 

h, - DoMS + D1M'+("'), ( t  = 0,  H + O+), (3.7) 

where Do is given by (2.15) and 

D1= hl(0). 

Hence 

D1,XlDl.Y = h l . x ( O ) / h ~ , ~ ( O ) =  mY/mx. (3.9) 
Now let us calculate the corrections to the spontaneous magnetisation. We require 

a solution of (3.1) for which MO f 0 when H = 0. As we saw in 0 2, the zeroth-order 
term corresponds to x = -xo .  Now consider a small deviation from - X O  to - x o  + exO, 
where 

Mo=X;p(-r)ql+p€+.  . .). (3.10) 

To first order, we must solve the equation 

0 = EXOhb(-XO)+M:'%l(-xo) 

giving (Domb and Gaunt 197 1) 

(3.11) 

E = - x o 2 ( h l ( - x o ) / h b ( - x o ) ) ( - ~ ~ .  (3.12) 
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By comparison with (2.4) we see that 

From (2.38) and (3.4) it follows that 

hb(-xo) = do,iho(0)xil 
and 

hi(-xo) = di.ohi(0) 

so substituting in (3.13) gives 

Hence, 

l + @  hl,X(O) hO,Y(O) 
B1.Y hl,Y(Oj ho,x(O) 

and on using (2.14), (2.16) and (3.3) this becomes 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

Now let us calculate the leading correction term for the high-temperature zero- 
field susceptibility ,yo(T). Substituting (2.37) and (3.6) into (3.1) and using (1.2) we 
obtain an expansion in odd powers of M, namely 

(3.19) mH/kT  = (ho(0)bo,lxiYtY + h1(0)b1,1x0 4 Y  + Y +  1 ) M + O ( M 3 )  

to leading order. From (3.19) we find 

(kT/m2)Xo - CO',2t-Y + CT,2t-Y+1 (H=O,f+O+) (3.20) 

where 

G.* = x;/(bo,lho(0)) (3.21) 

and 

From (3.21) we get 

which confirms (2.34) when 1 = 1, while (3.22) gives 

(3.22) 

(3.23) 

(3.24) 

for the leading correction term. 

deviation E X O  from -xo. Suppose one defines 
The low-temperature susceptibility may be dealt with by again considering a small 

( H  = 0, r + O - )  (3.25) (kT/m2)Xo - C . 2  (-t)-"+ Cy,, ( - t )  ++l 
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then (3,1), together with (2.38) and (3.4), and, of course, the scaling result y ' =  y lead 
after some algebra to 

c,2 = pxoY/(do,lho(O)) (3.26) 

Hence, we find 

in agreement with Betts et a1 (1971), and in addition 

(3.27) 

(3.28) 

(3.29) 

The singular part of the zero-field free energy fo(T) can be studied by generalising 
Griffiths' arguments (Griffiths 1967) for the dominant singularity. The treatment is 
rather more detailed than that presented so far and we simply summarise the main 
results. The cases a 7 0 and a = 0 must be considered separately. When a = a' = 0 
we find 

-fo(T)=Fir21n Itl+Ffltlr21n /ti, (H=O,t-,O*) (3.30) 

and 

When a' =a > 0, these relations generalise to 
2-a 

and 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

respectively. Since the specific heat is obtained essentially by differentiating fo( T )  
twice with respect to T, it is easily seen that (3,35) is equivalent to (2.10). However, 
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the amplitude of the next most singular term in the specific heat does not scale because 
of an additive contribution from the leading-order term which arises during differen- 
tiation. 

To summarise, by assuming H l ( x )  is a universal function of x / x o ,  we have derived 
lattice-lattice scaling formulae for the next most singular term of the zero-field free 
energy and susceptibility at both low and high temperatures, of the spontaneous 
magnetisation and of the shape of the critical isotherm. Analogous relations may also 
be derived for the higher-field derivatives of the free energy at both low and high 
temperatures evaluated in zero field and for the higher-temperature derivatives 
evaluated at the critical temperature. For example, on allowing for the next term, 
(2 .22 )  becomes 

with 

1-1  1 P1=,- 1 -g* 
We find that A: scales in the following way 

(3.37) 

(3.38) 

(3.39) 

We conclude this section by pointing out how CELL scaling is modified if hl(0)  = 0. 
Such a discussion is pertinent since hl(0) = 0 is a definite possibility for both two- and 
three-dimensional lattices (Domb and Gaunt 1971). In this case, we must scale h l ( x )  
by some non-zero length hl(b) .  CELL scaling relations for both high- and low- 
temperature amplitudes will clearly be unaffected since they are computed from the 
expansions of h l ( x )  about x = ot, and x = -xo, respectively. However, we expect some 
modification for amplitudes defined at T, since putting x = 0 in (Y.3) now gives, in 
contrast to (3.7), 

h, - ho(0)M6 + k1(O)MS+('"), (t=O,H+O+) (3.40) 

provided k l ( 0 )  # 0. For greater generality, let us assume that not only hl(0)  = 0 but 
that the first L derivatives of h l ( x )  at x = 0 are zero also. We then find that (3.37) 
holds only for 13 L+ 1; for 16 L we get 

with 

l -7  1-1 (1 c L) 
6 71 =-- A 

and 

(3.41) 

(3.42) 

(3.43) 

These last three results were obtained by assuming (in the same spirit as before) that 
kl(0) is a suitable scaling length for k l ( x ) .  Hence, k l ( x ) / k l ( 0 )  is a universal function 
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of x/xo and we are led to introduce a fourth scaling parameter, k, defined in analogy 
with m and n by 

k x / k y  = k i . y (O) /k i ,x(O) .  (3 .44 )  

Consequently, in the special case that 

(3 .45)  

we have a lattice-lattice scaling theory involving four parameters, g ,  n, m and k,  
although no more than three of them can occur in any one expression. 

4. Extended lattice-lattice scaling 

Let us set 

in the above expressions. Thus, we obtain 

1+6 
-- E:::: - (E) 

for the zero-field free energy, zero-field susceptibility and spontaneous magnetisation, 
respectively, and 

Dl.XID1,Y = w l n x  ( 4 . 6 )  

along the critical isotherm. These relations are identical with the ELL scaling results 
(Guttmann 1974, Ritchie and Betts 1975), which are known to hold exactly for the 
triangular, honeycomb and square lattices. It seems that these lattices correspond to 
the special case of m = n. This implies through (2 .16)  and (3 .3 )  that hl(O)/ho(O) is a 
universal constant, t+b say, so that 

h1(x)/ho(O) = Hl(X)(h 1(0)/ho(O)) 

is a universal function of x/xo. In other words, ELL scaling implies that only two 
scaling lengths, rather than the usual three, are required, namely, xo for x, and ho(0), 
for example, for both h o ( x )  and h l ( x ) .  We can now use (3 .7) ,  ( 3 . 8 )  and (2 .15 )  to make 
the simple prediction that along the critical isotherm 

h, - DoMb(l+ ( t  = 0, H + O+), (4 .7 )  
that is, the leading correction term is the same for all three lattices. 
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5. Kagome lattice 

It was shown by Ritchie and Betts (1975) that although ELL scaling holds for the 
triangular, honeycomb and square lattices, it does not hold for the KagomC lattice. In 
table 1 we give the exact values of the second most singular amplitudes for the 
zero-field free energy (F: ), spontaneous magnetisation ( B 1 )  and zero-field suscep- 
tibility (C?,Z ). We also give for comparison the ELL scaling predictions. The interes- 
ting point to note is that their magnitudes are all 1.3984% larger than the magnitudes 
of the exact values. Indeed it was the study of the implications of this constant 
discrepancy that provided the initial motivation for this work. 

Table 1. Exact values and ELL scaling predictions for the second most singular amplitudes 
for the Kagomt lattice. 

Amplitude Exact value ELL scaling 

F: =F; 0.163 965 041 0.166 257 920 
B1 -0.475 945 821 -0.482 601 422 
c;, 0,086 936 625 0.088 152 343 
c;,, -0.002 306 400 -0.002 338 652 

We have seen that ELL scaling implies m = n. If we allow m and n to differ, then 
the amplitudes of the second most singular term for the KagomC lattice are readily 
accounted for by the GELL scaling theory that we developed in P 3. The g -  and 
n-parameters for the KagomC lattice may be calculated as before by using the exactly 
available ampIitudes of the most singular term giving (Guttmann 1974) 

(5.1) g K =  1‘260 958 918, n K =  1,652 973 376. 

To calculate mK we may use, for example, the GELL scaling result (3.18) which for the 
triangular-KagomC pair becomes 

B I , T / B  1,K = mK/(nKg;”) (5.2) 
where we have set mT = n T  = gT = 1 (taking the triangular lattice as the standard) and 
p =i. Using the exact values of B1,K and B ~ , T  (=-0.371 791 998 8 . . . ) quoted in 
table 1 and by Guttmann (1975), respectively, we find 

(5.3) mK = 1.676 088 455. 

The exact values of all the other amplitudes in table 1, namely C;,z and F:, could now 
be predicted using gK, n K  and mK given by (5.1) and (5.3) and the appropriate GELL 
scaling results (3.29) and (3.34). 

Thus we have found 

mK/nK= 1.013 983 955 (5.4) 

( 5 . 5 )  

in contrast to 

mx/nx = 1 

for the triangular, honeycomb and square lattices. Hence, for the KagomC lattice, 
m/n  exceeds its value for the other three lattices by 1.398 395 5 . .  . YO. This is the 
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source of the constant discrepancy noted in table 1 for the amplitudes. To see this, 
consider the ratio 

where A is any of the second most singular amplitudes considered in 0 3. For 
example, consider the susceptibility amplitude C?,2. From (3.24) 

(5.7) 

(5.8) 

(5.9) 

2 C;1GELL)IC;,2,T = n K / ( m K g i 1 4 )  

and from (4.3) 
c + ( E L L )  

1,2,K I C L T  = nK/gi14, 

so that 

R K =  (mK/nK)- 1 = 1.398 395 5 . , . %. 

It is easily verified using our earlier results that the same value of R K  is obtained for all 
the second most singular amplitudes. 

As pointed out by Guttmann (1977), it is noteworthy that 

-CT,2/CL,2 = 37.693 6 5 2 ~  C:,2/C,2 (5.10) 

for the KagomC lattice as well as for the triangular, honeycomb and square lattices. 
This follows immediately from our results; from (3.21) and (3.26) we find 

C~,2/C0,2 = do,i/Pbo,i (5.11) 

and from (3.22) and (3.27) 

-C;,dC~,2 = bi,id:,ibi,: [2Pdo,zdi,o -Pdo,idi , i  -(2- y)do,idi ,o].  (5.12) 

The right-hand sides of (5.11) and (5.12) are both universal functions, so if the 
left-hand sides are equal for one lattice they will be equal for all four lattices including 
the Kagomt lattice. 

6. Scaling functions for exactly solvable problems 

We naturally wondered if the scaling functions for any of the exactly solvable prob- 
lems have the form proposed in this work. In this section, therefore, we study the 
mean-field and Bethe approximations for the Ising model, and the spherical model. 

We shall look first at the mean-field approximation for the Ising model to 
emphasise that its equation of state can be expressed in the form (1.3). As shown by 
Domb (1971), this form is most readily derived by starting from the equation 

M = tanh (?+ g) 
giving 

where 

x = [(T- Tc) /Tc]M-2 
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and 

h 1 ( x ) = f x + $ ,  h * ( X )  = +x +$, . . .  (6.3) 1 ho(x)  = x + 3, 

so that all the h i ( x )  are linear. It should be noted however that the definition of x used 
by Domb, namely (6.2), is not the same as our definition (1.2). In addition, the 
expansion (6.1) is of mH/kTc but in (1.3) of mH/kT, as discussed earlier. Transform- 
ing to the new variables we find 

hi(x) = $, h 2 ( x  ) = $, . . .  (6.4) 1 ho(x )  = x + 3, 

so that h o ( x )  is linear and all the other h i ( x )  are constants. Clearly xo = 5 and so 

H ~ ( u ) =  1 + U  

Hi(U) = 1 (i = 1 , 2 ,  3, . . .). 
The mean-field approximation ignores the lattice structure completely by focusing 
attention on a single spin. The fact that h i ( x ) / h i ( 0 )  for all i = 0, 1 , 2 ,  . . . is the same 
function of x / x o  for all lattices is not therefore particularly illuminating. 

In the Bethe approximation for the Ising model, the lattice structure enters in a 
simple way through the lattice coordination number q = U + 1 .  The magnetisation M 
is given by Domb (1960) as 

= (1 - p m  + 2PlZ + CL:) (6.7) 

where p l  is an intermediate variable defined implicitly through the relation 

W d C L  = (PI + z)"/(l+ zpl)Q. (6.8) 

p = exp (-2mH/kT), = exp (-2JlkT). (6.9) 

Here p and z are the usual Ising variables 

The critical temperature is given in the Bethe approximation by 

zc = exp (-2J/kTc) = 1 - 2q-I. (6.10) 

After some fairly lengthy algebraic manipulation, (6.7) and (6.8) can be recast in the 
form 

h = M 3 h o ( x ) + M S h l ( x ) + M 7 h ~ ( x ) + .  . , (6.11) 
with 

(6.12) 

(6.13) 

ho(x)=iqrc [ a x  + i ( l  - z , ) ]  2 

h l ( X )  = 4qzc[ZCY x +iCY(l - zf  )x  + k(7  - 3zf)(1- z f  )] 1 2 2  

where CY = 2J/kTc. From (6.12) we see that 

xo = (1 - Z : ) / ~ C Y  

ho(0) = i&Zc(l - Z f  

and from (6.13) 

h1(0)= &qZ,(7 - 32;  )(I- 2;). 

(6.14) 

(6.15) 

(6.16) 
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Hence, 

&(U) = (1 + U )  (6.17) 

and 

10 q - 1  5 q - 1  
H1(u)= 1 + -  U + -  U’ 

3 q2+3q-3  9 q 2 + 3 q - 3  
(6.18) 

We see that H0(u) is the same universal function of U as in the mean-field approxima- 
tion, (6.5). However, H l ( u )  is clearly not a universal function of U. We have checked 
that alternative definitions of reduced field and temperature do not give rise to a 
simpler form. In the limit of q + 03, the Bethe approximation should reduce to the 
mean-field approximation (Fisher and Gaunt 1964) and indeed from (6.18) we see 
that 

lim H l ( u ) =  1 
q-m 

in agreement with (6.6). 
For the spherical model, the equation of state and its correction terms have been 

investigated for the body-centred cubic lattice only (Joyce 1972, see also Domb 
1971). Transforming to our reduced field and temperature variables we find 

h =M5ho(x)+M7hl(X)+M9h2(X)+.  . . (6.19) 

where 

h o ( x ) =  blK% (1 + x ) ’  (6.20) 

h l ( X )  = b2K: ( 1  + x ) 3  -61K,3x(l +x)(3 + x ) .  (6.21) 

Here b l ,  b2 and K,  are constants whose values depend upon the particular lattice 
under consideration. It follows from (6.20) that x o  = 1 and hence 

Ho(u) = (1 + U)’ (6.22) 

H 1 ( ~ ) = ( 1 + u ) ~ - ( b l / b ~ K ~ ) ~ ( l  + u ) ( ~ + u ) .  (6.23) 

Notice that all the three cases we have considered have the same functional form for 
Ho, namely 

&(U) = (1 + U ) y .  (6.24) 

Although we cannot be sure, since we only have the results for one lattice, it appears 
that &(U) for the spherical model will be a universal function of U but that H l ( u )  will 
not be. Thus the spherical model and the mean-field approximation for the Ising 
model are alike in this respect. This breakdown of GELL scaling also occurs for the 
three-dimensional Ising model as reported in 0 1 .  

Finally, note that h l ( x )  in (6.21) can be written 

where 
U(U) = (1 + U ) 3 ,  V(u)=-u( l+u) (3+u)  (6.26) 

are possibly universal functions. This observation together with (6.30) prompted us to 



1396 D S Gaunt and A J Guttmann 

study the implications of the more general form 

(6.27) 

where U ( u )  and V ( u )  are universal functions of U, and k is an arbitrary constant. 
When U(u)=O, (6.27) implies ELL scaling since then hl(0)/ho(O) is universal. If, on 
the other hand, V(u)=O or k = 1 then hl(x)/hl(0) is universal and we get GELL 
scaling. Suppose however that U(u)$O and V ( u ) # O .  There are then two cases to 
consider. Firstly, if V(0)  # 0 substitution of x = 0 into (6.27) shows that hl(O)/ho(O) is 
universal and this case therefore gives ELL scaling. Second, if V(0)  = 0 it is easily 
shown (by the methods outlined earlier) that in general (6.27) does not lead to scaling 
behaviour. This case corresponds to the spherical model for which k = 0 and V ( u )  is 
given by (6.26). However, we can still get ELL scaling if either hl(0)/ho(O) is universal 
or if U ( u )  happens to have the unlikely expansion 

(6.28) 

where and are defined by (3.38) and (2.30) respectively. In the latter case a 
series of cancellations occurs and one can show that the amplitudes A:,  for example, 
defined by (3.37) scale like 

A h -  

It then follows that the ratio Rx, defined in analogy with (5.6) is given by 

(6.29) 

(6.30) 

which reduces correctly when k = 1 to give (5.9). Indeed it was while studying the 
implications of an R of this form that we were first led to consider an J t l ( x )  of the form 
given in (6.27). 

7. Summary 

In this paper we have explored the connection between LL scaling and the scaled 
equation of state of the king model and related models of phase transitions. All 
extensions and generalisations are subsequently formulated under the assumption that 
the correction to scaling exponent is unity above and below T,. It has been shown that 
LL scaling requires ho(x)/ho(O) to be a universal function of X/XO. If, in addition, 
hl (x) /ho(0)  is a universal function of x/xo then ELL scaling results. 

All the usually studied lattice models of phase transitions with short-range forces 
appear to satisfy LL scaling. However, only the Ising model on the square, triangular 
and honeycomb lattices, and (trivially) the king model in the mean-field approxima- 
tion are known to satisfy ELL scaling. (Our knowledge of most other models is too 
incomplete to allow ELL scaling to be tested.) In examining the breakdown of ELL 
scaling for the Ising model on the KagomC lattice, we are led to introduce GELL 

scaling, which requires h l ( x ) / h l ( 0 )  to be a universal function of x/xo. It is then 
apparent that ELL scaling is a special case of GELL scaling, corresponding to 
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hl(0)/ho(O) being a universal constant. If hl(0) vanishes, then h l ( x )  must be scaled by 
h l (b )  # 0. The theory for this situation is also established. 

An illuminating way to distinguish between these various theories is in terms of the 
number of distinct scaling lengths that enter the problem, apart from x o  which always 
scales x .  For LL scaling and ELL scaling there is but one scaling length ho(O), which 
scales both h o ( x )  and h l ( x ) .  For GELL scaling there are two scaling lengths, ho(0) to 
scale ho(x)  and hl (0)  to scale h l ( x ) ,  unless hl(0)=O when there are three scaling 
lengths, but no more than two are needed for the discussion of any particular 
amplitude ratio. 

The Ising model on the KagomC lattice is the only non-trivial example known to 
satisfy GELL scaling. We have shown that in the Bethe approximation the Ising model 
does not satisfy GELL scaling, and that the spherical model is most unlikely to satisfy 
GELL scaling. We have also reported on our (unpublished) series analyses which 
strongly suggest that the three-dimensional Ising model does not satisfy GELL scaling 
either. This extends earlier work showing that the three-dimensional Ising model 
does not satisfy ELL scaling. 
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